论文标题

具有欧米茄规范目标的随机系统的基于抽象的合成

Abstraction-based Synthesis for Stochastic Systems with Omega-Regular Objectives

论文作者

Dutreix, Maxence, Huh, Jeongmin, Coogan, Samuel

论文摘要

本文研究了使用有限状态抽象的控制器的控制器的合成,用于遵守欧米茄规范规格的离散时间随机系统。我们提出了一种合成算法,用于最大程度地减少或最大化具有有限数量模式的离散时间随机系统满足欧米茄规范性属性的可能性。我们的方法使用有限参数马尔可夫决策过程(BMDP)的形式使用了基础动力学的有限抽象,该方法是由系统域的有限分区产生的。这样的抽象允许每个动作之间的状态之间的一系列过渡概率。我们的方法分析了编码规范的抽象和确定性的Rabin自动机之间的产品。合成分解为一个定性问题,其中创建了产品的最大永久性获胜组成部分,并且是一个定量问题,这需要最大程度地提高到达该组件的概率。我们提出了一个关于抽象状态的控制器质量的指标,并设计了域分区精炼技术以达到质量目标。接下来,我们提出了一种计算具有连续输入集的随机系统控制器的方法。该系统被认为是输入和干扰中的仿射,我们得出了一种解决该系统中的定性和定量问题的技术,称为受控间隔值值马尔可夫链。通过对输入空间进行分区以生成BMDP的核算,以核算国家之间所有可能的定性过渡,可以找到此类抽象的最大永久成分。最大化达到此组件的概率是作为优化问题。为此框架描述了合成控制器和改进方案的质量。

This paper studies the synthesis of controllers for discrete-time, continuous state stochastic systems subject to omega-regular specifications using finite-state abstractions. We present a synthesis algorithm for minimizing or maximizing the probability that a discrete-time stochastic system with finite number of modes satisfies an omega-regular property. Our approach uses a finite-state abstraction of the underlying dynamics in the form of a Bounded-parameter Markov Decision Process (BMDP) arising from a finite partition of the system's domain. Such abstractions allow for a range of transition probabilities between states for each action. Our method analyzes the product between the abstraction and a Deterministic Rabin Automaton encoding the specification. Synthesis is decomposed into a qualitative problem, where the greatest permanent winning components of the product are created, and a quantitative problem, which requires maximizing the probability of reaching this component. We propose a metric for the quality of the controller with respect to the abstracted states and devise a domain partition refinement technique to reach a quality target. Next, we present a method for computing controllers for stochastic systems with a continuous input set. The system is assumed to be affine in input and disturbance, and we derive a technique for solving the qualitative and quantitative problems in the abstractions of such systems called Controlled Interval-valued Markov Chains. The greatest permanent component of such abstractions are found by partitioning the input space to generate a BMDP accounting for all possible qualitative transitions between states. Maximizing the probability of reaching this component is cast as an optimization problem. Quality of the synthesized controller and a refinement scheme are described for this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源