论文标题

基于扩散和吸收的组合,宽带THZ低散射表面

Wideband THz Low-Scattering Surface Based on Combination of Diffusion and Absorption

论文作者

Rouhi, Kasra, Abdolali, Ali, Fallah, Susan

论文摘要

在本文中,引入了Terahertz(THZ)中的宽带和低散射的跨面。所提出的编码跨表面由一个层中的四个不同的石墨烯方形贴片组成,该平面具有不同的偏置电压。通过优化每个斑块的化学电位,可以实时控制设计元件的反射阶段和振幅。化学势优化方法是一种开发元信息的有前途的方法,它可以在不同频率光谱下动态地调整反射阶段,幅度或极化。实际上,通过调整元表面反射曲线,建议的设备可以操纵反射波。同样,该跨表面可以减少宽波段光谱中的反射能。可编程表面分散了第一个频带中各个方向的反射功率,并将入射电磁波转换为第二频带的热量。获得的结果表明,在TE和TM极化波发生率下,可以在1.02至2.82 THz以上实现超过1.02至2.82 TH的降低。由于石墨烯单层的共形性能,在围绕金属弯曲的对象缠绕时,元图的隐身特征得到了很好的保存。这种优化方法在THZ频谱的各种波束形成应用中具有出色的相位,大小和极化控制的能力,用于高分辨率成像和隐形技术。

In this paper, a wideband and low-scattering metasurface in terahertz (THz) is introduced. The proposed coding metasurface is composed of four different graphene square patches in one layer, which has a distinct bias voltage. By optimizing the chemical potential of each patch, the reflection phase and amplitude of a designed element can be controlled in a real-time manner. The chemical potential optimizing approach is a promising method to develop metasurfaces, which can tune the reflection phase, magnitude, or polarization dynamically at different frequencies spectrum. Indeed, by adjusting the metasurface reflection profile, the suggested device can manipulate the reflected wave. Also, this metasurface can reduce reflection energy in the wide-band spectrum. The programmable surface disperses reflected power in various directions in a first frequency band and converts incident electromagnetic waves into heat at second frequency band. The obtained results demonstrate that more than 10 dB reflection reduction can be realized over 1.02 to 2.82 THz under both TE and TM polarized wave incidences. Due to the conformal properties of the graphene monolayer, the stealth feature of the metasurface is well preserved while wrapping around a metallic curved object. This optimization method has an excellent aptitude for phase, magnitude, and polarization control in various beamforming applications at the THz spectrum for high-resolution imaging and stealth technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源