论文标题

精制复曲面的热带计算

A Tropical Computation of Refined Toric Invariants

论文作者

Blomme, Thomas

论文摘要

在Arxiv:1505.04338(4)中,G。Mikhalkin在感谢您的表面上引入了真实有理曲线的精制计数,该曲线通过了表面的圆磨边界上的某些共轭不变点集。这样的集合由真实点和一对复杂的共轭点组成。然后,他证明了这一精制计数的结果仅取决于每个复杂的共轭点对的数量。使用热带几何方法和对应定理,如果配置的所有点都是真实的,他设法计算了这些不变性。在本文中,我们解决了配置包含一些共轭点的情况时,所有情况都属于复曲面边界的同一组件。

In arXiv:1505.04338(4), G. Mikhalkin introduced a refined count for the real rational curves in a toric surface which pass through certain conjugation invariant set of points on the toric boundary of the surface. Such a set consists of real points and pairs of complex conjugated points. He then proved that the result of this refined count depends only on the number of pairs of complex conjugated points on each toric divisor. Using the tropical geometry approach and the correspondence theorem, he managed to compute these invariants if all the points of the configuration are real. In this paper we address the case when the configuration contains some pairs of conjugated points, all belonging to the same component of the toric boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源