论文标题
关于DL-Lite知识库的扩展和收缩
On Expansion and Contraction of DL-Lite Knowledge Bases
论文作者
论文摘要
知识库(KB)不是静态实体:不断出现新信息,并且以前的一些知识变得过时了。为了反映这种知识的发展,应通过新知识扩展KB,并从过时的知识中签约。对于命题而言,这个问题是有充分研究的,但对于一阶KBS而言,这个问题要少得多。在这项工作中,我们调查了在DL-Lite中表达的KB的知识扩展和收缩,这是一个描述逻辑(DLS),其基于网络本体语言owl 2的可拖动片段OWL 2 Ql。我们以新颖的知识演化框架和自然的姿态开始,将演变分为外观,并将其与邮政相比,并将其比较到良好的exm agm agm posterates。然后,我们回顾了众所周知的模型和基于公式的命题理论的扩展和收缩方法,并展示了如何适应DL-Lite的情况。特别是,我们显示了基于模型的方法的内在局限性:除了其中一些不尊重我们已经建立的假设之外,它们还忽略了KBS的结构特性。这导致了进化结果的不希望的特性:DL-Lite KB的演化无法在DL-Lite中捕获。此外,我们表明,众所周知的基于公式的方法也不适合DL-Lite扩展和收缩:它们要么具有很高的计算性,要么产生逻辑理论,而逻辑理论无法用DL-Lite表示。因此,我们提出了一种基于公式的新方法,该方法尊重我们的原理以及在DL-Lite中可以表达的进化。对于这种方法,我们也建议 当进化仅影响事实数据时,多项式时间确定性算法计算DL-Lite KB的演变。
Knowledge bases (KBs) are not static entities: new information constantly appears and some of the previous knowledge becomes obsolete. In order to reflect this evolution of knowledge, KBs should be expanded with the new knowledge and contracted from the obsolete one. This problem is well-studied for propositional but much less for first-order KBs. In this work we investigate knowledge expansion and contraction for KBs expressed in DL-Lite, a family of description logics (DLs) that underlie the tractable fragment OWL 2 QL of the Web Ontology Language OWL 2. We start with a novel knowledge evolution framework and natural postulates that evolution should respect, and compare our postulates to the well-established AGM postulates. We then review well-known model and formula-based approaches for expansion and contraction for propositional theories and show how they can be adapted to the case of DL-Lite. In particular, we show intrinsic limitations of model-based approaches: besides the fact that some of them do not respect the postulates we have established, they ignore the structural properties of KBs. This leads to undesired properties of evolution results: evolution of DL-Lite KBs cannot be captured in DL-Lite. Moreover, we show that well-known formula-based approaches are also not appropriate for DL-Lite expansion and contraction: they either have a high complexity of computation, or they produce logical theories that cannot be expressed in DL-Lite. Thus, we propose a novel formula-based approach that respects our principles and for which evolution is expressible in DL-Lite. For this approach we also propose polynomial time deterministic algorithms to compute evolution of DL-Lite KBs when evolution affects only factual data.