论文标题
两个轮廓的渐近高原问题
Asymptotic Plateau Problem for Two Contours
论文作者
论文摘要
对于两条隔离的恒星形状曲线(包括圆圈),在双曲线3空间的渐近边界中,如果这两个Jordan曲线之间的距离(请参见定义1.8)在上面的距离上以某种恒定的态度界定,那么存在一个最小的(或同等最小的面积)最小的面积(或同等的面积)最小的面积的最小化表面效果。本文的主要结果是定理1.7和定理1.11。
For two disjoint rectifiable star-shaped Jordan curves (including round circles) in the asymptotic boundary of hyperbolic 3-space, if the distance (see Definition 1.8) between these two Jordan curves are bounded from above by some constant, then there exists an annulus-type area minimizing (or equivalently least area) minimal surface asymptotic to these two Jordan curves. The main results of this paper are Theorem 1.7 and Theorem 1.11.