论文标题

两个轮廓的渐近高原问题

Asymptotic Plateau Problem for Two Contours

论文作者

Wang, Biao

论文摘要

对于两条隔离的恒星形状曲线(包括圆圈),在双曲线3空间的渐近边界中,如果这两个Jordan曲线之间的距离(请参见定义1.8)在上面的距离上以某种恒定的态度界定,那么存在一个最小的(或同等最小的面积)最小的面积(或同等的面积)最小的面积的最小化表面效果。本文的主要结果是定理1.7和定理1.11。

For two disjoint rectifiable star-shaped Jordan curves (including round circles) in the asymptotic boundary of hyperbolic 3-space, if the distance (see Definition 1.8) between these two Jordan curves are bounded from above by some constant, then there exists an annulus-type area minimizing (or equivalently least area) minimal surface asymptotic to these two Jordan curves. The main results of this paper are Theorem 1.7 and Theorem 1.11.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源