论文标题
HyperCube图的可定向的汉密尔顿嵌入
Orientable Hamiltonian Embeddings of the Hypercube Graph
论文作者
论文摘要
哈密顿式的嵌入是图$ g $的嵌入,因此每个面部的边界是$ g $的汉密尔顿周期。结果表明,HyperCube图$ q_n $承认当$ n $是2的功率时,将这种嵌入在可定位的表面上。hamiltonian嵌入$ q_n $的基本必要条件,并且对其他$ n $的其他值进行了猜想。
A Hamiltonian embedding is an embedding of a graph $G$ such that the boundary of each face is a Hamiltonian cycle of $G$. It is shown that the hypercube graph $Q_n$ admits such an embedding on an orientable surface when $n$ is a power of 2. Basic necessary conditions on Hamiltonian embeddings for $Q_n$ and conjectures are made about other values of $n$.