论文标题
通过非共聚的极端紫外线波与Attosond脉冲混合氦气中对氦气中的衣服状态相干的检测
Self-Heterodyned Detection of Dressed State Coherences in Helium by Noncollinear Extreme Ultraviolet Wave Mixing with Attosecond Pulses
论文作者
论文摘要
具有Attosend Extreme-Ultraviolet(XUV)脉冲的非共线性波混合光谱具有对电子动力学的前所未有的见解。在红外且可见的方案中,杂尼检测技术利用参考字段来放大波浪混合信号,同时允许进行相敏感的测量。在这里,我们在非共线性波混合测量测量中实现了自我系统的检测方案,其XUV脉冲序列短,并在红外线(NIR)脉冲附近的两个几个周期脉冲。最初的时空重叠XUV和NIR脉冲在气态氦气内产生奇数(1SNP),甚至(1SNS和1SND)的连贯性。一个可变的延迟非连接NIR脉冲会产生角度依赖的四波混合信号,这些信号报告了这种相干性的演变。这些发射信号为基础的XUV谐波的弥漫性角结构用作杂化检测的参考场,从而导致瞬时波浪混合光谱中的循环振荡。通过这种检测方案,可以观察到从至少八个不同的光引起或打扮的状态发出的波浪信号,而在类似的同型波浪混合测量中仅鉴定出的一个光感应状态。与自组织的检测方案结合使用,非连接几何形状允许确定和角度分离不同的波浪混合途径,从而降低了瞬态光谱的复杂性。这些结果表明,杂尼检测方案的应用可以提供信号放大和相位敏感性,同时保持非固定性XUV波缩混合光谱的多功能性和选择性。这些技术将是研究XUV政权中复杂化学系统中超快动态的重要工具。
Noncollinear wave-mixing spectroscopies with attosecond extreme ultraviolet (XUV) pulses provide unprecedented insight into electronic dynamics. In infrared and visible regimes, heterodyne detection techniques utilize a reference field to amplify wave-mixing signals while simultaneously allowing for phase-sensitive measurements. Here, we implement a self-heterodyned detection scheme in noncollinear wave-mixing measurements with a short attosecond XUV pulse train and two few-cycle near infrared (NIR) pulses. The initial spatiotemporally overlapped XUV and NIR pulses generate a coherence of both odd (1snp) and even (1sns and 1snd) parity states within gaseous helium. A variably delayed noncollinear NIR pulse generates angularly-dependent four-wave mixing signals that report on the evolution of this coherence. The diffuse angular structure of the XUV harmonics underlying these emission signals is used as a reference field for heterodyne detection, leading to cycle oscillations in the transient wave-mixing spectra. With this detection scheme, wave-mixing signals emitting from at least eight distinct light-induced, or dressed, states can be observed, in contrast to only one light induced state identified in a similar homodyne wave-mixing measurement. In conjunction with the self-heterodyned detection scheme, the noncollinear geometry permits the conclusive identification and angular separation of distinct wave-mixing pathways, reducing the complexity of transient spectra. These results demonstrate that the application of heterodyne detection schemes can provide signal amplification and phase-sensitivity, while maintaining the versatility and selectivity of noncollinear attosecond XUV wave-mixing spectroscopies. These techniques will be important tools in the study of ultrafast dynamics within complex chemical systems in the XUV regime.