论文标题

复杂网络中相互作用传播动力学的相图

Phase diagrams of interacting spreading dynamics in complex networks

论文作者

Pan, Liming, Yang, Dan, Wang, Wei, Cai, Shimin, Zhou, Tao, Lai, Ying-Cheng

论文摘要

现实世界中的流行传播过程可以以合作,竞争性或不对称方式相互互动,这需要基于协同进化动态的描述。可能会出现丰富的现象,例如不连续的爆发过渡和歇斯底里,但是缺乏参数空间中这些行为的完整情况。我们开发了一种通过降低频谱维度在复杂网络上相互作用的传播动力学的理论。特别是,我们从显微镜淬灭的平均场方程中得出了二维系统,从宏观变量角度来看,这使得可以通过分析确定全相图。该图预测了以前已知但仅在数值上的临界现象,例如不连续过渡和磁滞之间的相互作用以及三级点点的出现和作用。

Epidemic spreading processes in the real world can interact with each other in a cooperative, competitive, or asymmetric way, requiring a description based on coevolution dynamics. Rich phenomena such as discontinuous outbreak transitions and hystereses can arise, but a full picture of these behaviors in the parameter space is lacking. We develop a theory for interacting spreading dynamics on complex networks through spectral dimension reduction. In particular, we derive from the microscopic quenched mean-field equations a two-dimensional system in terms of the macroscopic variables, which enables a full phase diagram to be determined analytically. The diagram predicts critical phenomena that were known previously but only numerically, such as the interplay between discontinuous transition and hysteresis as well as the emergence and role of tricritical points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源