论文标题
S.L.L.N.和C.L.T.在I.I.D.中随机散步卡利树上的随机环境
S.L.L.N. and C.L.T. for Random Walks in I.I.D. Random Environment on Cayley Trees
论文作者
论文摘要
我们将随机步行在独立且相同分布的(i.i.d.)随机环境中的随机步行,该图的cayley图是$ \ mathbb {z} $和$ \ mathbb {z} _2 $的有限副本的有限免费产品。这样的开银图被视为普通树。在I.I.D.的均匀伸张性假设下环境我们表明,步行的速度为正,并为步行者与起点的图形距离建立了退火的中央限制定理。
We consider the random walk in an independent and identically distributed (i.i.d.) random environment on a Cayley graph of a finite free product of copies of $\mathbb{Z}$ and $\mathbb{Z}_2$. Such a Cayley graph is readily seen to be a regular tree. Under a uniform elipticity assumption on the i.i.d. environment we show that the walk has positive speed and establish the annealed central limit theorem for the graph distance of the walker from the starting point.