论文标题

非交流环的两个构造之间的态度

Morphisms between two constructions of Witt vectors of non-commutative rings

论文作者

Pisolkar, Supriya

论文摘要

令$ a $为任何Unital协会,可能是非交通戒指,让$ p $为素数。令$ e(a)$为Cuntz和Deninger构建的$ p $ typical witt vectors的戒指,$ w(a)$是由Hesselholt构建的Abelian集团。在Arxiv:1708.04065中,证明,如果$ p = 2 $和$ a $是非交换性扭转的无扭矩,则没有$ W(a)\ to hh_0到hh_0到hh_0到hh_0(e(a))(e(a)):= e(a)/\ edimute {e(A) Teichmüller地图。在本文中,我们将此结果推广到所有Primes $ p $,并简化了用于$ P = 2 $的参数。我们还证明,如果$ a $ a是非交换性的,那么没有连续的映射$ hh_0(e(a))\ to w(a)$,它可以用幽灵地图上班。

Let $A$ be any unital associative, possibly non-commutative ring and let $p$ be a prime number. Let $E(A)$ be the ring of $p$-typical Witt vectors as constructed by Cuntz and Deninger and $W(A)$ be the abelian group constructed by Hesselholt. In arXiv:1708.04065 it was proved that if $ p=2$ and $A$ is non commutative unital torsion free ring then there is no surjective continuous group homomorphism from $W(A) \to HH_0(E(A)): = E(A)/\overline{[E(A),E(A)]}$ which commutes with the Verschiebung operator and the Teichmüller map. In this paper we generalise this result to all primes $p$ and simplify the arguments used for $p=2$. We also prove that if $A$ a is non-commutative unital ring then there is no continuous map of sets $HH_0(E(A)) \to W(A)$ which commutes with the ghost maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源