论文标题

神经自动启动:在生物学和人工神经网络中避免刺激来组织自我边界

Neural Autopoiesis: Organizing Self-Boundary by Stimulus Avoidance in Biological and Artificial Neural Networks

论文作者

Masumori, Atsushi, Sinapayen, Lana, Maruyama, Norihiro, Mita, Takeshi, Bakkum, Douglas, Frey, Urs, Takahashi, Hirokazu, Ikegami, Takashi

论文摘要

活生物体必须积极维护自己,以便继续存在。 Autopoiesis是研究生物体研究的关键概念,在该生物体中,该生物体的边界不是由系统本身动态调节的静态概念。为了研究自治的自主调节,我们专注于使用生物学和人工神经网络对环境变化的神经亲身动力学反应。先前的研究表明,具有尖峰依赖性可塑性(STDP)的体现的培养神经网络和尖峰神经网络会避免外部刺激,从而学习动作。在本文中,由于我们使用体现培养的神经元实验的结果,我们发现还有第二个属性允许网络避免刺激:如果代理无法学习避免外部刺激的动作,它倾向于减少刺激诱发的尖峰,好像忽略了无法控制的输入。我们还表明,这种行为是通过具有不对称性STDP的神经网络来重现的。我们认为,这些属性被认为是对网络的自主和非自治的自主调节,其中可控的神经元被视为自我,而无法控制的神经元被视为非自我。最后,我们通过提出避免刺激的原则来引入神经自动驾驶。

Living organisms must actively maintain themselves in order to continue existing. Autopoiesis is a key concept in the study of living organisms, where the boundaries of the organism is not static by dynamically regulated by the system itself. To study the autonomous regulation of self-boundary, we focus on neural homeodynamic responses to environmental changes using both biological and artificial neural networks. Previous studies showed that embodied cultured neural networks and spiking neural networks with spike-timing dependent plasticity (STDP) learn an action as they avoid stimulation from outside. In this paper, as a result of our experiments using embodied cultured neurons, we find that there is also a second property allowing the network to avoid stimulation: if the agent cannot learn an action to avoid the external stimuli, it tends to decrease the stimulus-evoked spikes, as if to ignore the uncontrollable-input. We also show such a behavior is reproduced by spiking neural networks with asymmetric STDP. We consider that these properties are regarded as autonomous regulation of self and non-self for the network, in which a controllable-neuron is regarded as self, and an uncontrollable-neuron is regarded as non-self. Finally, we introduce neural autopoiesis by proposing the principle of stimulus avoidance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源