论文标题
一维拓扑绝缘子,具有非中转对称轴
One-dimensional topological insulators with noncentered inversion symmetry axis
论文作者
论文摘要
在本文中,我们讨论了单位电池中具有反转对称性但非中心反转轴的一维拓扑绝缘子的特征,以便任何选择单位电池。在这些系统中,全局倒置操作在单位电池内生成了k依赖性反转操作员,这意味着对于琐事和非平凡拓扑阶段的非量化Zak阶段。通过将Zak的相位与反转Momenta的修改平均运算符的特征值联系起来,得出了Zak阶段的校正量化形式。我们表明,该链家族的有限能量拓扑边缘状态不是由通常的手性对称性保护的,而是由隐藏的Sublattice手性手性对称对称性保护的。为这些链的任何终点选择的两极分化量化关系的转移提供了简单的理由。
In this paper, we discuss the characteristic features of one-dimensional topological insulators with inversion symmetry but noncentered inversion axis in the unit cell, for any choice of the unit cell. In these systems, the global inversion operation generates a k-dependent inversion operator within the unit cell and this implies a nonquantized Zak's phase both for the trivial and nontrivial topological phases. By relating the Zak's phase with the eigenvalues of modified parity operators at the inversion invariant momenta, a corrected quantized form of the Zak's phase is derived. We show that finite energy topological edge states of this family of chains are symmetry protected not by usual chiral symmetry but by a hidden sublattice chiral-like symmetry. A simple justification is presented for shifts in the polarization quantization relation for any choice of endings of these chains.