论文标题
上界的某些高度概念
Upper bound on some hightness notions
论文作者
论文摘要
我们为计算随机性理论中的几种殿堂特性提供了上限。首先,我们证明,离散的覆盖属性并不意味着计算1随机真实的能力,回答了格林伯格,米勒和尼斯的问题。这也意味着一组无限的不可压缩字符串并不一定会提取1随机的真实。其次,我们证明,鉴于一棵均匀的二进制树,该树不承认无限的可计算路径,这是一系列有界的玛特宁格(Martingale),其初始资本往往为零,因此存在一个无限的Martingale $ s $,以至于它们中的任何一个都不是$ s $都不会计算一棵树的无限路径。这意味着1)高(CR,MLR)并不意味着PA的完整性,回答了Miller的问题; 2)$ \ leq _ {\ mathsf {cr}} $并不意味着$ \ leq_t $,回答了NIE的问题。第二个结果的证据表明,通用C.E.的编码能力Martingale在于其无限差异。
We give upper bound for several highness properties in computability randomness theory. First, we prove that discrete covering property does not imply the ability to compute a 1-random real, answering a question of Greenberg, Miller and Nies. This also implies that an infinite set of incompressible strings does not necessarily extract a 1-random real. Second, we prove that given a homogeneous binary tree that does not admit an infinite computable path, a sequence of bounded martingale whose initial capital tends to zero, there exists a martingale $S$ majorizing infinitely any of them such that $S$ does not compute an infinite path of the tree. This implies that 1) High(CR,MLR) does not imply PA-completeness, answering a question of Miller; 2) $\leq_{\mathsf{CR}}$ does not imply $\leq_T$, answering a question of Nies. The proof of the second result suggests that the coding power of the universal c.e. martingale lies in its infinite variance.