论文标题

$ a_0 $ - 蒙德的宇宙连接

The $a_0$ -- cosmology connection in MOND

论文作者

Milgrom, Mordehai

论文摘要

我的众人瞩目并回顾了MOND的潜在至关重要的方面:Mond加速常数的近乎平等,$ A_0 $ - 从本地的银河现象中推导出来 - 和宇宙学参数。 wit,$ a_0 \ sim c h_0 \ sim c^2λ^{1/2} \ sim c^2/\ ell_u $,其中$ h_0 $是Hubble-lemaître常数的现值,$λ$是``cesmmological常数''和$ \ ell_u $ n is cousmological cormological entrymological targemality targematiolatient temalitix temalistic temalistic tementimentiment tementiment tementist length;例如,哈勃距离或与$λ$相关的de Sitter半径。本身,这种近乎平等具有一些重要的现象学后果,例如黑洞的不可能和宇宙学强的镜头。也许更重要的是,这种“巧合”可能是指向“基础”的指针,这是Mond现象学的基本理论。还审查了现有的基础计划中这种关系在其他物理系统中相似关系的例子,显然是基础的速度,长度和加速常数之间的示例。这样的类比可能会指向解释“巧合”的道路。

I limelight and review a potentially crucial aspect of MOND: The near equality of the MOND acceleration constant, $a_0$ -- as deduced from local, galactic phenomena -- and cosmological parameters. To wit, $a_0\sim c H_0\sim c^2Λ^{1/2}\sim c^2/\ell_U$, where $H_0$ is the present value of the Hubble-Lemaître constant, $Λ$ is the `cosmological constant', and $\ell_U$ is a cosmological characteristic length; e.g., the Hubble distance, or the de Sitter radius associated with $Λ$. In itself, this near equality has some important phenomenological consequences, such as the impossibility of black holes, and of cosmological strong lensing, in the MOND regime. More importantly perhaps, this `coincidence' may be a pointer to the `FUNDAMOND' -- the more basic theory underlying MOND phenomenology. The manners in which such a relation emerges in existing, underlying scheme of MOND are also reviewed, interlaced with examples of similar relations in other physical systems, between apparently-fundamental velocity, length, and acceleration constants. Such analogies may point the way to explanation of the MOND `coincidence'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源