论文标题

数据驱动的AI系统的偏见 - 介绍性调查

Bias in Data-driven AI Systems -- An Introductory Survey

论文作者

Ntoutsi, Eirini, Fafalios, Pavlos, Gadiraju, Ujwal, Iosifidis, Vasileios, Nejdl, Wolfgang, Vidal, Maria-Esther, Ruggieri, Salvatore, Turini, Franco, Papadopoulos, Symeon, Krasanakis, Emmanouil, Kompatsiaris, Ioannis, Kinder-Kurlanda, Katharina, Wagner, Claudia, Karimi, Fariba, Fernandez, Miriam, Alani, Harith, Berendt, Bettina, Kruegel, Tina, Heinze, Christian, Broelemann, Klaus, Kasneci, Gjergji, Tiropanis, Thanassis, Staab, Steffen

论文摘要

如今,基于AI的系统已被广泛采用,以制定对个人和社会产生深远影响的决策。他们的决定可能会影响到任何地方,随时随地都对潜在的人权问题产生关注。因此,有必要超越针对预测性能的传统AI算法,并在其设计,培训和部署中嵌入道德和法律原则,以确保社会益处,同时仍然从AI技术的巨大潜力中受益。这项调查的目的是为AI系统中偏见领域提供广泛的多学科概述,重点介绍技术挑战和解决方案,并建议在法律框架中使用良好的方法进行新的研究指示。在这项调查中,我们专注于数据驱动的AI,因为如今,AI的很大一部分是通过(大)数据和功能强大的机器学习(ML)算法供电的。如果没有指定,我们会使用一般术语偏见来描述与数据收集或处理有关的问题,这可能会导致在种族,性别,性别等人群特征基础上的偏见决定。

AI-based systems are widely employed nowadays to make decisions that have far-reaching impacts on individuals and society. Their decisions might affect everyone, everywhere and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multi-disciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful Machine Learning (ML) algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features like race, sex, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源