论文标题

复曲面品种的双曲线方法

Hyperbola method on toric varieties

论文作者

Pieropan, Marta, Schindler, Damaris

论文摘要

我们开发了双曲线方法的非常通用的版本,该版本将Blomer和Brüdern的已知方法扩展到投影空间的产品,以完成光滑的折叠式旋转品种。我们用它来计算完全平滑的折叠曲面$ \ mathbb {q} $ - 具有圆环不变边界的campana点。我们在线性编程中应用了强双重性原理,以显示结果与千斤顶的结果的兼容性。

We develop a very general version of the hyperbola method which extends the known method by Blomer and Brüdern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height on complete smooth split toric $\mathbb{Q}$-varieties with torus invariant boundary. We apply the strong duality principle in linear programming to show the compatibility of our results with the conjectured asymptotic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源