论文标题

通过修剪来有效且稳定的图形散射转换

Efficient and Stable Graph Scattering Transforms via Pruning

论文作者

Ioannidis, Vassilis N., Chen, Siheng, Giannakis, Georgios B.

论文摘要

图形卷积网络(GCN)在各种图形学习任务中具有据可查的性能,但它们的分析仍处于起步阶段。图散射变换(GSTS)提供无训练的深GCN模型,这些模型从图形数据中提取特征,并且可以接受概括和稳定性分析。商品及服务税支付的价格是时空的指数复杂性,随着层数的增加。当需要深层体系结构时,这会阻止GST的部署。目前的工作通过引入有效的So-Termed Pruned(P)GST方法来解决GST的复杂性限制。所得的修剪算法由图形光谱启发的标准指导,并保留绕线的信息散射特征,同时绕过与GST相关的指数复杂性。当输入图数据或网络结构受到干扰时,还建立了新型PGST的稳定性。此外,对PGST对随机和局部信号扰动的敏感性进行了分析和实验研究。数值测试展示了PGST在大量计算节省下与基线GST相当的性能。此外,PGST在图形和3D点云分类任务中的最新GCN具有可比的性能。在分析PGST修剪模式后,显示出不同域中的图数据需要不同的网络体系结构,并且可以使用修剪算法来指导当代GCN的设计选择。

Graph convolutional networks (GCNs) have well-documented performance in various graph learning tasks, but their analysis is still at its infancy. Graph scattering transforms (GSTs) offer training-free deep GCN models that extract features from graph data, and are amenable to generalization and stability analyses. The price paid by GSTs is exponential complexity in space and time that increases with the number of layers. This discourages deployment of GSTs when a deep architecture is needed. The present work addresses the complexity limitation of GSTs by introducing an efficient so-termed pruned (p)GST approach. The resultant pruning algorithm is guided by a graph-spectrum-inspired criterion, and retains informative scattering features on-the-fly while bypassing the exponential complexity associated with GSTs. Stability of the novel pGSTs is also established when the input graph data or the network structure are perturbed. Furthermore, the sensitivity of pGST to random and localized signal perturbations is investigated analytically and experimentally. Numerical tests showcase that pGST performs comparably to the baseline GST at considerable computational savings. Furthermore, pGST achieves comparable performance to state-of-the-art GCNs in graph and 3D point cloud classification tasks. Upon analyzing the pGST pruning patterns, it is shown that graph data in different domains call for different network architectures, and that the pruning algorithm may be employed to guide the design choices for contemporary GCNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源