论文标题
F理论模型中肠道和双扇区的相对尺度
Relative Scales of the GUT and Twin Sectors in an F-theory model
论文作者
论文摘要
在这封信中,我们分析了参考文献中讨论的F理论模型中肠道和双扇区的相对尺度。 \ cite {clemens-3}。模型中有许多音量模量。可见扇区{[} sector(1){]}(带有Wilson Line肠道破裂)的肠道表面的体积定义了肠量表$ M_ {gut} \ sim2 \ sim2 \ times10^{16} 〜gev $作为统一量表,并具有精确的尺度,以$ su(3)\ su(3)\ su(3)\ su(3)\ su(2)我们选择$α_{gut}^{ - 1} \ sim24 $。然后,我们可以自由选择$α_{g}(2)/α_{g}(1)= m_ {1}/m_ {2} $,带有$ m(1)$和$ m(1)$和$ m(2)$独立的体积模量与垂直于两个凹陷表面的方向相关联。然后,我们分析双扇形(2)的有效田间理论,这可能导致Susy破裂的高速公凝结物。当然,所有这些结果都需要模量的自洽稳定。
In this letter we analyze the relative scales for the GUT and twin sectors in the F-theory model discussed in Ref. \cite{Clemens-3}. There are a number of volume moduli in the model. The volume of the GUT surface in the visible sector {[}sector(1){]} (with the Wilson line GUT breaking) defines the GUT scale $M_{GUT}\sim2\times10^{16}~GeV$ as the unification scale with precise gauge coupling unification of $SU(3)\times SU(2)\times U(1)_{Y}$. We choose $α_{GUT}^{-1}\sim24$. We are then free to choose the ratio $α_{G}(2)/α_{G}(1)=m_{1}/m_{2}$ with $m(1)$ and $m(2)$ independent volume moduli associated with the directions perpendicular to the two GUT surfaces. We then analyze the effective field theory of the twin sector(2), which may lead to a SUSY breaking gaugino condensate. Of course, all these results are subject to the self-consistent stabilization of the moduli.