论文标题
$ p $ - 可分子的级别结构来自Morava $ e $ - ABELIAN团体的理论
Level structures on $p$-divisible groups from the Morava $E$-theory of abelian groups
论文作者
论文摘要
水平结构方案与正式群体的普遍变形与有限阿伯利亚群体的摩尔拉瓦$ $ $ $ $ $ $ $ $ - $ e $ $ $ $理论的电力运营研究起着重要作用。本文的目的是探索$ p $可分别组上的水平结构之间的关系,这是由于常数$ p $ - 可划分的群体与普通变形的微不足道延伸,而摩尔拉瓦$ e $ e $ e $ e $ e $ e $ e $ - 迭代的免费循环空间的分类空间。
The close relationship between the scheme of level structures on the universal deformation of a formal group and the Morava $E$-cohomology of finite abelian groups has played an important role in the study of power operations for Morava $E$-theory. The goal of this paper is to explore the relationship between level structures on the $p$-divisible group given by the trivial extension of the universal deformation by a constant $p$-divisible group and the Morava $E$-cohomology of the iterated free loop space of the classifying space of a finite abelian group.