论文标题

鲁棒方法,用于全扫描的血细胞微观图像的语义分割

Robust Method for Semantic Segmentation of Whole-Slide Blood Cell Microscopic Image

论文作者

Shahzad, Muhammad, Umar, Arif Iqbal, Khan, Muazzam A., Shirazi, Syed Hamad, Khan, Zakir, Yousaf, Waqas

论文摘要

先前关于SEM分割(扫描电子显微镜)血细胞图像的作品忽略了全囊血细胞分割的语义分割方法。在拟议的工作中,我们使用语义分割方法解决了全细胞分割的问题。我们将新型的卷积编码器框架与VGG-16一起设计为像素级特征提取模型。 -E所提出的框架包括3个主要步骤:首先,所有原始图像以及每个血细胞类型的手动生成的地面真相面具都通过预处理阶段。在预处理阶段,像素级标签,rgb到蒙版图像和像素融合的灰度转换以及统一蒙版的生成。之后,将VGG16加载到系统中,该系统充当验证的像素级特征提取模型。在第三步中,训练过程是在提出的模型上启动的。我们已经评估了三个评估指标的网络性能。我们在阶级以及全球和平均精度方面取得了出色的结果。我们的系统分别达到了RBC,WBC和血小板的阶级精度,分别为97.45%,93.34%和85.11%,而全球和平均准确性分别保持97.18%和91.96%。

Previous works on segmentation of SEM (scanning electron microscope) blood cell image ignore the semantic segmentation approach of whole-slide blood cell segmentation. In the proposed work, we address the problem of whole-slide blood cell segmentation using the semantic segmentation approach. We design a novel convolutional encoder-decoder framework along with VGG-16 as the pixel-level feature extraction model. -e proposed framework comprises 3 main steps: First, all the original images along with manually generated ground truth masks of each blood cell type are passed through the preprocessing stage. In the preprocessing stage, pixel-level labeling, RGB to grayscale conversion of masked image and pixel fusing, and unity mask generation are performed. After that, VGG16 is loaded into the system, which acts as a pretrained pixel-level feature extraction model. In the third step, the training process is initiated on the proposed model. We have evaluated our network performance on three evaluation metrics. We obtained outstanding results with respect to classwise, as well as global and mean accuracies. Our system achieved classwise accuracies of 97.45%, 93.34%, and 85.11% for RBCs, WBCs, and platelets, respectively, while global and mean accuracies remain 97.18% and 91.96%, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源