论文标题

Lomb-Scargle方法的多元扩展

The Multivariate Extension of the Lomb-Scargle Method

论文作者

Seilmayer, Martin, Gonzalez, Ferran Garcia, Wondrak, Thomas

论文摘要

多元($ n $维)时间序列(例如离散的FRORIE TRONSSION(FT)或小波变换)的光谱分析的常见方法基于傅立叶序列,将离散数据分解为一组三角模型组件,例如。 g。振幅和相位。应用于有限范围的离散数据,可以观察到(时间离散)ft的几个限制,这是由于三角基函数在有限间隔内的正交性不匹配而引起的。但是,在不符号或碎片采样ft方法的一般情况下,参数估计会导致重大错误。因此,不基于傅立叶级数的经典隆布式方法(LSM)是作为统计工具开发的,用于一维数据,以规避FT的不一致和错误的参数估计。目前的工作通过重新定义转移参数$τ$来为$ n $二维数据集推导LSM,以维持三角基础的正交性。一个分析推导表明,$ n $ -D LSM扩展了传统的1D案例,可保留所有统计益处,例如改善的噪声拒绝。在这里,我们得出LSM的参数置信区间,并将其与ft进行比较。具有理想测试数据和实验数据的应用程序将说明和支持所提出的方法。

The common methods of spectral analysis for multivariate ($n$-dimensional) time series, like discrete Frourier transform (FT) or Wavelet transform, are based on Fourier series to decompose discrete data into a set of trigonometric model components, e. g. amplitude and phase. Applied to discrete data with a finite range several limitations of (time discrete) FT can be observed which are caused by the orthogonality mismatch of the trigonometric basis functions on a finite interval. However, in the general situation of non-equidistant or fragmented sampling FT based methods will cause significant errors in the parameter estimation. Therefore, the classical Lomb-Scargle method (LSM), which is not based on Fourier series, was developed as a statistical tool for one dimensional data to circumvent the inconsistent and erroneous parameter estimation of FT. The present work deduces LSM for $n$-dimensional data sets by a redefinition of the shifting parameter $τ$, to maintain orthogonality of the trigonometric basis. An analytical derivation shows, that $n$-D LSM extents the traditional 1D case preserving all the statistical benefits, such as the improved noise rejection. Here, we derive the parameter confidence intervals for LSM and compare it with FT. Applications with ideal test data and experimental data will illustrate and support the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源