论文标题
3D prandtl方程的Gevrey功能空间中的适应性,没有结构假设
Well-posedness in Gevrey function space for 3D Prandtl equations without Structural Assumption
论文作者
论文摘要
我们在Gevrey功能空间中建立了良好的定位,对于三维PRANDTL系统,没有任何结构假设,具有最佳的规律性2类别2。该证明以一种新颖的方式结合了系统中的新取消和一些旧思想,以克服系统中衍生物丧失的难度。这表明系统中导致不良性的三维不稳定性并不比两个维度差。
We establish the well-posedness in Gevrey function space with optimal class of regularity 2 for the three dimensional Prandtl system without any structural assumption. The proof combines in a novel way a new cancellation in the system with some of the old ideas to overcome the difficulty of the loss of derivatives in the system.This shows that the three dimensional instabilities in the system leading to ill-posedness are not worse than the two dimensional ones.