论文标题
在全球积极特征的全球领域的二元性二元性
Duality for complexes of tori over a global field of positive characteristic
论文作者
论文摘要
如果k是一个数字字段,则tori的算术双重性理论和k上的托里复合物对于理解K上线性代数群的局部 - 全球全球原理至关重要。主要成分之一是Artin-Mazur-Milne二元性定理,用于有限的平面交换组方案的FPPF共同体。
If K is a number field, arithmetic duality theorems for tori and complexes of tori over K are crucial to understand local-global principles for linear algebraic groups over K. When K is a global field of positive characteristic, we prove similar arithmetic duality theorems, including a Poitou-Tate exact sequence for Galois hypercohomology of complexes of tori. One of the main ingredients is Artin-Mazur-Milne duality theorem for fppf cohomology of finite flat commutative group schemes.