论文标题
GW170817二进制中子星合并的多理智和多物理学贝叶斯推断
Multi-messenger and multi-physics Bayesian inference for GW170817 binary neutron star merger
论文作者
论文摘要
仅从GW170817中提取的潮汐变形概率分布,或包括多通信器信息,在半强度的状态物质方程中与天体物理和核物理学面临其他约束。我们使用贝叶斯统计数据将低密度核物理数据组合在一起,例如基于$χ$ eft相互作用的AB-Initio预测,或等值巨头巨型单极共振,以及来自中子星的天体物理约束,例如中子星的最大质量或最大的概率函数或从tidal doformitional offormitional offormitional offormitientional offormational offormitionalitional offormationalition $ $ $ \ tiLdeLem $ \ tww 170 evel the gw 1 ever the gw1 comper the g 1 ex the g e y1 comper。后代概率分布函数在几个核经验参数($ l_ \ textrm {sym} $,$ k_ \ textrm {sym} $,$ q_ \ textrm {sat} $和$ q_ \ q_ \ q_ \ textrm {sym} $)上,以及$ 1.4MM. $ r_ {1.4} $和饱和密度$ p(2n_ \ textrm {sat})$的压力的两倍。 $ l_ \ textrm {sym} $和$ k_ \ textrm {sym} $与$ k_ \ textrm {sat} $和$ q_ \ textrm {sat} $之间的相关性。在后代之间发现了张力:第一个位于潮汐变形概率分布本身中,具体取决于是否包括多通间剂分析,第二个是在观测数据和核物理学输入之间。这些紧张局势影响了$ l_ \ textrm {sym} $,$ k_ \ textrm {sym} $和$ r_ {1.4} $的预测,而质心则不同,而质心则不同。还讨论了对国家核方程的影响。
The tidal deformability probability distribution extracted from GW170817 alone, or including multi-messenger information, is confronted to astrophysical and nuclear physics additional constraints within a semi-agnostic approach for the dense matter equation of state. We use Bayesian statistics to combine together low density nuclear physics data, such as the ab-initio predictions based on $χ$EFT interactions or the isoscalar giant monopole resonance, and astrophysical constraints from neutron stars, such as the maximum mass of neutron stars or the probability density function of the tidal deformability $\tildeΛ$ obtained from the GW170817 event. The posteriors probability distribution functions are marginalized over several nuclear empirical parameters ($L_\textrm{sym}$, $K_\textrm{sym}$, $Q_\textrm{sat}$ and $Q_\textrm{sym}$), as well as over observational quantities such as the $1.4M_\odot$ radius $R_{1.4}$ and the pressure at twice the saturation density $P(2n_\textrm{sat})$. The correlations between $L_\textrm{sym}$ and $K_\textrm{sym}$ and between $K_\textrm{sat}$ and $Q_\textrm{sat}$ are also further analyzed. Tension is found between the posteriors: the first one is localized in the tidal deformability probability distribution itself, depending whether multi-messenger analysis is included or not, and the second one is between the observational data and the nuclear physics inputs. These tensions impact the predictions for $L_\textrm{sym}$, $K_\textrm{sym}$ and $R_{1.4}$ with centroids which differ by 2-3$σ$. Implications for the nuclear equation of state are also discussed.