论文标题
Metaselector:元学习,用于推荐使用用户级自适应模型选择
MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection
论文作者
论文摘要
推荐系统通常会面临包含用户高度个性化历史数据的异构数据集,在这里,没有一个模型可以为每个用户提供最佳建议。我们在公共和私人数据集上观察到这种无处不在的现象,并解决了为每个用户优化推荐质量的模型选择问题。我们提出了一个元学习框架,以促进推荐系统中的用户级自适应模型选择。在此框架中,对推荐人的集合进行了培训,并通过所有用户的数据进行了培训,其中模型选择器通过元学习训练,以使用特定于用户的历史数据为每个用户选择最佳单个模型。我们在两个公共数据集和一个现实世界生产数据集上进行了广泛的实验,这表明我们所提出的框架在AUC和Logloss方面可以对单个模型基线和样品级模型选择器进行改进。特别是,当部署在线推荐系统中时,这些改进可能会导致巨大的利润增长。
Recommender systems often face heterogeneous datasets containing highly personalized historical data of users, where no single model could give the best recommendation for every user. We observe this ubiquitous phenomenon on both public and private datasets and address the model selection problem in pursuit of optimizing the quality of recommendation for each user. We propose a meta-learning framework to facilitate user-level adaptive model selection in recommender systems. In this framework, a collection of recommenders is trained with data from all users, on top of which a model selector is trained via meta-learning to select the best single model for each user with the user-specific historical data. We conduct extensive experiments on two public datasets and a real-world production dataset, demonstrating that our proposed framework achieves improvements over single model baselines and sample-level model selector in terms of AUC and LogLoss. In particular, the improvements may lead to huge profit gain when deployed in online recommender systems.