论文标题

纯度在色度局部代数$ k $ - 理论中

Purity in chromatically localized algebraic $K$-theory

论文作者

Land, Markus, Mathew, Akhil, Meier, Lennart, Tamme, Georg

论文摘要

我们证明,在望远镜本地化的代数$ k $的纯度属性中,环光谱理论:对于$ n \ geq 1 $,$ t(n)$ - $ k(r)$的本地化仅取决于$ t(0)\ oplus \ oplus \ dots \ oplus \ oplus \ oplus t(n)$ - $ r $的本地化。这补充了Waldhausen在Rational $ K $ - 理论中的经典结果。将我们的结果与Clausen的作品结合在一起 - 大师 - Naumann- noel,发现$ l_ {t(n)} k(r)$实际上仅取决于$ t(n-1)\ oplus t(n)$ - $ r $的本地化,又是$ n \ geq 1 $。结果,我们推断出望远镜本地化的$ k $ - 理论的几个消失结果,以及$ k(r)$和$ \ mathrm {tc}(τ_ {\ geq 0} r)$ t(n)$之后的等价性 - $ n \ geq 2 $。

We prove a purity property in telescopically localized algebraic $K$-theory of ring spectra: For $n\geq 1$, the $T(n)$-localization of $K(R)$ only depends on the $T(0)\oplus \dots \oplus T(n)$-localization of $R$. This complements a classical result of Waldhausen in rational $K$-theory. Combining our result with work of Clausen--Mathew--Naumann--Noel, one finds that $L_{T(n)}K(R)$ in fact only depends on the $T(n-1)\oplus T(n)$-localization of $R$, again for $n \geq 1$. As consequences, we deduce several vanishing results for telescopically localized $K$-theory, as well as an equivalence between $K(R)$ and $\mathrm{TC}(τ_{\geq 0} R)$ after $T(n)$-localization for $n\geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源