论文标题
预测摇摆的光学骰子晶格中的大调子阶段
Predicting Large-Chern-Number Phases in a Shaken Optical Dice Lattice
论文作者
论文摘要
关于量子异常效应(QAHE),检测拓扑非平凡的大调子阶段是一个有趣的主题。这项研究是受到Floquet拓扑阶段的最新研究的激励,提出了一种定期驾驶方案,该方案使用QAHE来设计大型陈旧阶段。在此,在二维光学骰子晶状体中研究了无旋转的超低效率原子,并具有最近的邻居跳跃和$λ$/v型的Sublattice潜力,受到圆形驱动力的影响。结果表明,大型数量的相位存在于Chern数量等于$ C = -2 $,这与Edge-State Energy Spectra一致。
With respect to the quantum anomalous Hall effect (QAHE), the detection of topological nontrivial large-Chern-number phases is an intriguing subject. Motivated by recent research on Floquet topological phases, this study proposes a periodic driving protocol to engineer large-Chern-number phases using QAHE. Herein, spinless ultracold fermionic atoms are studied in a two-dimensional optical dice lattice with nearest-neighbor hopping and a $Λ$/V-type sublattice potential subjected to a circular driving force. Results suggest that large-Chern-number phases exist with Chern numbers equal to $C=-2$, which is consistent with the edge-state energy spectra.