论文标题

Berezin-Toeplitz量化表示的几何结构

A geometric construction of representations of the Berezin-Toeplitz quantization

论文作者

Chan, Kwokwai, Leung, Naichung Conan, Li, Qin

论文摘要

对于配备有量价线的捆绑包$ l $的kähler歧管$ x $,我们为berezin-toeplitz变形量化量化代数$(c^\ infty(x)[[\ hbar]],\ star_ {bt})关键的想法是使用峰值部分适当地将希尔伯特空间定位$ h^{0} \ left(x,x,l^{\ otimes m} \ right)$周围$ z_ {0} $在大容量限制中。

For a Kähler manifold $X$ equipped with a prequantum line bundle $L$, we give a geometric construction of a family of representations of the Berezin-Toeplitz deformation quantization algebra $(C^\infty(X)[[\hbar]],\star_{BT})$ parametrized by points $z_0 \in X$. The key idea is to use peak sections to suitably localize the Hilbert spaces $H^{0}\left(X,L^{\otimes m}\right)$ around $z_{0}$ in the large volume limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源