论文标题
leray-hopf弱解决方案的部分规律性与不可压缩的Navier-Stokes方程式
Partial regularity of Leray-Hopf weak solutions to the incompressible Navier-Stokes equations with hyperdissipation
论文作者
论文摘要
我们表明,如果$ u $是不可压缩的Navier的LERAY-HOPF弱解决方案 - 用(1,5/4)$ in(1,5/4)$的超级降低$α\ Stoking stokations $ s \ subset \ subset \ mathbb {r}^3 $中存在一个$ y $ y y $ s $ s y Is $ subl yes $ s in $ s $ s y y hausd hausdor for,dim $ s in y hausd of y hausd of y hausd of y hausd of,它的盒子计数尺寸由$(-16α^2 +16α + 5)/3 $界定。我们的方法灵感来自Katz&Pavlović(Geom。Funct。Anal。,2002)的思想。
We show that if $u$ is a Leray-Hopf weak solution to the incompressible Navier--Stokes equations with hyperdissipation $α\in (1,5/4)$ then there exists a set $S\subset \mathbb{R}^3$ such that $u$ remains bounded outside of $S$ at each blow-up time, the Hausdorff dimension of $S$ is bounded above by $ 5-4α$ and its box-counting dimension is bounded by $(-16α^2 + 16α+5)/3$. Our approach is inspired by the ideas of Katz & Pavlović (Geom. Funct. Anal., 2002).