论文标题
马尔可夫链的稳态扩散近似:通过离散泊松方程进行错误分析
Steady-state diffusion approximations of Markov chains: error analysis via the discrete Poisson equation
论文作者
论文摘要
本文使用Stein方法的发电机方法来分析马尔可夫链的稳态分布与扩散过程之间的差距。到目前为止,调用Stein方法解决此问题的标准方法是将Poisson方程用于扩散作为起点。这种方法的主要技术困难是在泊松方程的解决方案的衍生物上获得界限,也称为Stein因子边界。在本文中,我们提出从马尔可夫链的离散泊松方程开始。我们方法中的一个重要一步是扩展在定义扩散的连续体上定义要定义的离散泊松方程,我们通过使用插值来实现这一目标。尽管仍然存在Stein因子的界限,但这些因素现在与离散泊松方程解的有限差异相对应,而不是解决方案的衍生物与连续溶液的衍生物相反。离散的Stein因子边界可以更容易获得,例如,当漂移并非无处不在,当扩散具有与状态有关的扩散系数或存在反射边界条件的情况下。我们将加入在Halfin-Whitt制度中的最短队列模型作为说明方法的工作示例。我们表明,扩散极限的稳态近似误差以$ 1/\ sqrt {n} $的速率收敛到零,其中$ n $是系统中的服务器数量。
This paper uses the generator approach of Stein's method to analyze the gap between steady-state distributions of Markov chains and diffusion processes. Until now, the standard way to invoke Stein's method for this problem was to use the Poisson equation for the diffusion as a starting point. The main technical difficulty with this approach is obtaining bounds on the derivatives of the solution to the Poisson equation, also known as Stein factor bounds. In this paper we propose starting with the discrete Poisson equation of the Markov chain. An important step in our approach is extending the discrete Poisson equation to be defined on the continuum where the diffusion is defined, and we achieve this by using interpolation. Although there are still Stein factor bounds to prove, these now correspond to the finite differences of the discrete Poisson equation solution, as opposed to the derivatives of the solution to the continuous one. Discrete Stein factor bounds can be easier to obtain, for instance when the drift is not everywhere differentiable, when the diffusion has a state-dependent diffusion coefficient, or in the presence of a reflecting boundary condition. We use the join the shortest queue model in the Halfin-Whitt regime as a working example to illustrate the methodology. We show that the steady-state approximation error of the diffusion limit converges to zero at a rate of $1/\sqrt{n}$, where $n$ is the number of servers in the system.