论文标题
基于旋转投影的树点云数据的无自动标记登记
Automatic marker-free registration of tree point-cloud data based on rotating projection
论文作者
论文摘要
使用陆地激光扫描仪(TLS)获取的Point-Cloud数据在数字林业研究中起着重要作用。多次扫描通常用于克服闭塞效果并获得完整的树结构信息。但是,这是耗时的,很难将人工反射器放在具有复杂地形的森林中,用于基于标记的注册,这一过程可降低注册自动化和效率。在这项研究中,我们提出了一种自动的粗到精细方法,用于从单树的多个扫描中对点云数据进行注册。在粗糙的注册中,每次扫描产生的点云都被投影到球形表面上,以生成一系列二维(2D)图像,这些图像用于估计多个扫描的初始位置。然后从这些系列的2D图像中提取相应的特征点对。在罚款中,使用点云的数据切片和拟合方法用于提取相应的中央茎和分支中心,以用作计算良好转换参数的绑定点。为了评估注册结果的准确性,我们提出了一个错误评估模型,通过计算相邻扫描中相应分支的中心点之间的距离。为了进行准确的评估,我们在两棵模拟树和一棵现实的树上进行了实验。所提出的方法的平均注册错误在模拟树点云上为0.26m,在现实世界中的树点云上周围为0.05m。
Point-cloud data acquired using a terrestrial laser scanner (TLS) play an important role in digital forestry research. Multiple scans are generally used to overcome occlusion effects and obtain complete tree structural information. However, it is time-consuming and difficult to place artificial reflectors in a forest with complex terrain for marker-based registration, a process that reduces registration automation and efficiency. In this study, we propose an automatic coarse-to-fine method for the registration of point-cloud data from multiple scans of a single tree. In coarse registration, point clouds produced by each scan are projected onto a spherical surface to generate a series of two-dimensional (2D) images, which are used to estimate the initial positions of multiple scans. Corresponding feature-point pairs are then extracted from these series of 2D images. In fine registration, point-cloud data slicing and fitting methods are used to extract corresponding central stem and branch centers for use as tie points to calculate fine transformation parameters. To evaluate the accuracy of registration results, we propose a model of error evaluation via calculating the distances between center points from corresponding branches in adjacent scans. For accurate evaluation, we conducted experiments on two simulated trees and a real-world tree. Average registration errors of the proposed method were 0.26m around on simulated tree point clouds, and 0.05m around on real-world tree point cloud.