论文标题

从右键单词重建单词

Reconstructing Words from Right-Bounded-Block Words

论文作者

Fleischmann, Pamela, Lejeune, Marie, Manea, Florin, Nowotka, Dirk, Rigo, Michel

论文摘要

来自分散因素的单词的重建问题要求提供最小的信息,例如给定长度的分散因子的多集或给定集合中分散因子的发生数量,是独特地确定单词的必要条件。我们表明,可以从最多$ \ min(| w | _a,| w | _b)+ 1 $零散因子$ a^{i^{i^{i} b $中重建一个单词$ w \ in \ {a,a,b \}^{*} $。此外,我们将结果概括到表单$ \ {1,\ ldots,q \} $的字母中,显示最多最多$ \ sum^{q-1} _ {i = 1} | w | _i(q-i+1)$零散的因子可以重建$ w $。到目前为止,这两种结果都在已知的上限上有所改善。这里还考虑了重建算法的复杂时间界限。

A reconstruction problem of words from scattered factors asks for the minimal information, like multisets of scattered factors of a given length or the number of occurrences of scattered factors from a given set, necessary to uniquely determine a word. We show that a word $w \in \{a, b\}^{*}$ can be reconstructed from the number of occurrences of at most $\min(|w|_a, |w|_b)+ 1$ scattered factors of the form $a^{i} b$. Moreover, we generalize the result to alphabets of the form $\{1,\ldots,q\}$ by showing that at most $ \sum^{q-1}_{i=1} |w|_i (q-i+1)$ scattered factors suffices to reconstruct $w$. Both results improve on the upper bounds known so far. Complexity time bounds on reconstruction algorithms are also considered here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源