论文标题
索引微积分攻击的奇偶校验(XOR)推理
Parity (XOR) Reasoning for the Index Calculus Attack
论文作者
论文摘要
加密问题通常可以简化为解决布尔多项式系统,其等效逻辑公式可以使用SAT求解器处理。鉴于该问题的代数性质,逻辑XOR操作员的使用在基于SAT的隐性分析中很常见。最近的工作集中在处理平价(XOR)约束的先进技术上,例如高斯消除技术。首先,我们提出了一个原始的XOR-ROUNTION SAT求解器,名为WDSAT(Weil Descent Satving),专门针对特定的加密问题。其次,我们表明,在某些情况下,SAT实例上的高斯消除不如代数系统上的高斯消除效果。我们演示了该疏忽是如何固定在我们的求解器中的,该求解器适用于以代数正常形式(ANF)读取实例。最后,我们根据图理论中的最小顶点覆盖问题提出了一种新颖的预处理技术。在多元布尔多项式系统的框架内,这种预处理技术被用作DLL分支选择规则,该规则可快速线性化基础代数系统。我们的基准测试使用了从加密实例获得的模型,该模型使用本文中的发现实现了显着的加速。我们进一步解释了如何将我们的预处理技术用作对加密系统安全性的评估。
Cryptographic problems can often be reduced to solving Boolean polynomial systems, whose equivalent logical formulas can be treated using SAT solvers. Given the algebraic nature of the problem, the use of the logical XOR operator is common in SAT-based cryptanalysis. Recent works have focused on advanced techniques for handling parity (XOR) constraints, such as the Gaussian Elimination technique. First, we propose an original XOR-reasoning SAT solver, named WDSat (Weil Descent SAT solving), dedicated to a specific cryptographic problem. Secondly, we show that in some cases Gaussian Elimination on SAT instances does not work as well as Gaussian Elimination on algebraic systems. We demonstrate how this oversight is fixed in our solver, which is adapted to read instances in algebraic normal form (ANF). Finally, we propose a novel preprocessing technique based on the Minimal Vertex Cover Problem in graph theory. This preprocessing technique is, within the framework of multivariate Boolean polynomial systems, used as a DLL branching selection rule that leads to quick linearization of the underlying algebraic system. Our benchmarks use a model obtained from cryptographic instances for which a significant speedup is achieved using the findings in this paper. We further explain how our preprocessing technique can be used as an assessment of the security of a cryptographic system.