论文标题
神经进化的健身景观的研究
A Study of Fitness Landscapes for Neuroevolution
论文作者
论文摘要
健身景观是研究元映体动力学的有用概念。在过去的二十年中,它们已成功地用于估计几种类型的进化算法的优化能力,包括遗传算法和遗传编程。但是,到目前为止,它们从未被用来研究在看不见的数据上机器学习算法的性能,并且从未应用于神经进化。本文旨在填补这两个差距,首次适用于神经进化,并使用它们来推断有关该方法的预测能力的有用信息。更具体地说,我们使用基于语法的方法来产生卷积神经网络,并研究了三种不同突变的动力学以进化它们。为了表征健身景观,我们研究了耐加度的自相关和熵衡量。结果表明,这些度量适用于估计所考虑的神经进化构型的优化能力和概括能力。
Fitness landscapes are a useful concept to study the dynamics of meta-heuristics. In the last two decades, they have been applied with success to estimate the optimization power of several types of evolutionary algorithms, including genetic algorithms and genetic programming. However, so far they have never been used to study the performance of machine learning algorithms on unseen data, and they have never been applied to neuroevolution. This paper aims at filling both these gaps, applying for the first time fitness landscapes to neuroevolution and using them to infer useful information about the predictive ability of the method. More specifically, we use a grammar-based approach to generate convolutional neural networks, and we study the dynamics of three different mutations to evolve them. To characterize fitness landscapes, we study autocorrelation and entropic measure of ruggedness. The results show that these measures are appropriate for estimating both the optimization power and the generalization ability of the considered neuroevolution configurations.