论文标题

具有协变量平均值和协方差结构的功能性PCA

Functional PCA with Covariate Dependent Mean and Covariance Structure

论文作者

Ding, Fei, He, Shiyuan, Jones, David E., Huang, Jianhua Z.

论文摘要

将协变量纳入功能主成分分析(PCA)可以大大提高主组件的表示效率和预测性能。但是,许多现有的功能性PCA方法不利用协变量,而那些通常具有很高的计算成本或在实践中违反的过度简单假设。在本文中,我们提出了一个新框架,称为协方差功能主成分分析(CD-FPCA),其中平均值和协方差结构都取决于协方差。我们提出了一种相应的估计算法,该算法利用样条基依据表示和粗糙度惩罚,并且比适当的估计和预测准确性的竞争方法在计算上比计算上更有效。我们作品的一个关键方面是我们的新方法来建模协方差函数并确保它是对称的正定半准。我们通过模拟研究和天文数据分析来证明我们方法的优势。

Incorporating covariates into functional principal component analysis (PCA) can substantially improve the representation efficiency of the principal components and predictive performance. However, many existing functional PCA methods do not make use of covariates, and those that do often have high computational cost or make overly simplistic assumptions that are violated in practice. In this article, we propose a new framework, called Covariate Dependent Functional Principal Component Analysis (CD-FPCA), in which both the mean and covariance structure depend on covariates. We propose a corresponding estimation algorithm, which makes use of spline basis representations and roughness penalties, and is substantially more computationally efficient than competing approaches of adequate estimation and prediction accuracy. A key aspect of our work is our novel approach for modeling the covariance function and ensuring that it is symmetric positive semi-definite. We demonstrate the advantages of our methodology through a simulation study and an astronomical data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源