论文标题
用模拟X表征静水质量偏置
Characterizing hydrostatic mass bias with Mock-X
论文作者
论文摘要
在未来十年中,调查将提供大量的星系簇样本,从而改变我们对它们形成的理解。群集天体物理学和宇宙学研究将受到如此庞大的样本的限制。具有已知特性,簇的流体动力学模拟为研究潜在系统学提供了重要资源。但是,只有在以正确的方式将模拟与观察结果进行比较时,才能意识到这。在这里,我们介绍了\ textsc {mock-x}分析框架,该框架是一种多波长工具,该工具从宇宙模拟中生成合成图像,并通过观察方法得出光环属性。我们详细介绍了生成光学,compton-$ y $和X射线图像的方法。概述了我们的合成X射线图像分析方法,我们通过探索Illustristng,Bahamas和MacSIS模拟的静水质量偏见来证明框架的能力。使用模拟派生的轮廓,我们找到了一个大约恒定的偏差$ b \ \ \ of0.13 $,簇质量与流体动力学方法无关或亚网状物理学。然而,从合成观察结果中得出的静水偏置是质量依赖性的,对于最庞大的簇,质量依赖于$ b = 0.3 $。该结果是由单个温度拟合到准气体平衡中具有较大温度分布的频谱的驱动的。光谱温度和质量估计值由于其二次密度依赖性而受到发射的较低气体的偏见。估计质量中的偏差和散射仍然独立于数值方法和亚网格物理学。我们的结果与当前的观察结果一致,未来的调查将包含足够的大量簇样品,以确认静水偏置的质量依赖性。
Surveys in the next decade will deliver large samples of galaxy clusters that transform our understanding of their formation. Cluster astrophysics and cosmology studies will become systematics limited with samples of this magnitude. With known properties, hydrodynamical simulations of clusters provide a vital resource for investigating potential systematics. However, this is only realized if we compare simulations to observations in the correct way. Here we introduce the \textsc{Mock-X} analysis framework, a multiwavelength tool that generates synthetic images from cosmological simulations and derives halo properties via observational methods. We detail our methods for generating optical, Compton-$y$ and X-ray images. Outlining our synthetic X-ray image analysis method, we demonstrate the capabilities of the framework by exploring hydrostatic mass bias for the IllustrisTNG, BAHAMAS and MACSIS simulations. Using simulation derived profiles we find an approximately constant bias $b\approx0.13$ with cluster mass, independent of hydrodynamical method or subgrid physics. However, the hydrostatic bias derived from synthetic observations is mass-dependent, increasing to $b=0.3$ for the most massive clusters. This result is driven by a single temperature fit to a spectrum produced by gas with a wide temperature distribution in quasi-pressure equilibrium. The spectroscopic temperature and mass estimate are biased low by cooler gas dominating the emission, due to its quadratic density dependence. The bias and the scatter in estimated mass remain independent of the numerical method and subgrid physics. Our results are consistent with current observations and future surveys will contain sufficient samples of massive clusters to confirm the mass dependence of the hydrostatic bias.