论文标题
Koszul和本地的共同体,以及Dutta的问题
Koszul and local cohomology, and a question of Dutta
论文作者
论文摘要
对于dimension $ n $的本地戒指$(a,\ mathfrak {m})$,我们从koszul共同体学模块中研究自然图$ h^n(\ mathfrak {m}; a)$ to local colighomology模块$ h^n_ \ n_ \ mathfrak {m}(m)$。我们证明,这张地图的注射率表征了环$ a $的Cohen-Macaulay属性。我们还通过构造该地图为零的普通环$ a $来回答Dutta的问题。
For a local ring $(A,\mathfrak{m})$ of dimension $n$, we study the natural map from the Koszul cohomology module $H^n(\mathfrak{m}; A)$ to the local cohomology module $H^n_\mathfrak{m}(A)$. We prove that the injectivity of this map characterizes the Cohen-Macaulay property of the ring $A$. We also answer a question of Dutta by constructing normal rings $A$ for which this map is zero.