论文标题
通过追踪数据,通过现场加权在足球比赛中进行空间评估
Space evaluation in football games via field weighting based on tracking data
论文作者
论文摘要
在足球比赛分析中,空间评估是一个重要的问题,因为它与球传球或球员形成的质量直接相关。先前的研究主要集中在现场分区方法上,其中一个场地分为主要区域,在该区域中,某个球员可以在任何其他球员之前到达。但是,场分裂的方法被过度简化,因为本文中的所有位置都被认为是统一的。当前研究的目的是提出一个基于现场加权的空间评估的基本框架。特别是,我们采用了运动模型,并计算了每个球员到足球场上所有位置的最低到达时间$τ$。我们的主要贡献是两个变量$τ_ {\ textrm {of}} $和$τ_{\ textrm {df}} $,对应于进攻和国防团队的最低到达时间;使用$τ_ {\ textrm {of}} $和$τ_ {\ textrm {df}} $,定义了新的正交变量$ z_ {1} $和$ z_ {2} $。特别是,基于2018年45个J1联赛足球比赛的数据的真实数据集,我们提供了$ z_ {1} $和$ z_ {2} $的详细表征。通过使用我们的方法,我们发现$ z_ {1}(\ vec {x},t)$和$ z_ {2}(\ vec {x},t),t)$代表了$ \ vec {x} $的通行证的安全程度通过Sigmoid函数可以很好地拟合通过的成功概率。此外,讨论了在使用真实游戏数据射击之前的新型现场分区方法和对球传球的评估。
In football game analysis, space evaluation is an important issue because it is directly related to the quality of ball passing or player formations. Previous studies have primarily focused on a field division approach wherein a field is divided into dominant regions in which a certain player can arrive prior to any other players. However, the field division approach is oversimplified because all locations within a region are regarded as uniform herein. The objective of the current study is to propose a fundamental framework for space evaluation based on field weighting. In particular, we employed the motion model and calculated a minimum arrival time $ τ$ for each player to all locations on the football field. Our main contribution is that two variables $ τ_{\textrm{of}} $ and $ τ_{\textrm{df}} $ corresponding to the minimum arrival time for offense and defense teams are considered; using $ τ_{\textrm{of}} $ and $ τ_{\textrm{df}} $, new orthogonal variables $ z_{1} $ and $ z_{2} $ are defined. In particular, based on real datasets comprising of data from 45 football games of the J1 League in 2018, we provide a detailed characterization of $ z_{1} $ and $ z_{2} $ in terms of ball passing. By using our method, we found that $ z_{1}(\vec{x}, t) $ and $ z_{2}(\vec{x}, t) $ represent the degree of safety for a pass made to $ \vec{x} $ at $ t $ and degree of sparsity of $ \vec{x} $ at $ t $, respectively; the success probability of passes could be well-fitted using a sigmoid function. Moreover, a new type of field division approach and evaluation of ball passing just before shoots using real game data are discussed.