论文标题

卷积网络中的无损关注野外面部表达识别

Lossless Attention in Convolutional Networks for Facial Expression Recognition in the Wild

论文作者

Wang, Chuang, Hu, Ruimin, Hu, Min, Liu, Jiang, Ren, Ting, He, Shan, Jiang, Ming, Miao, Jing

论文摘要

与约束额面条件不同,野外的面有各种不受限制的干扰因素,例如复杂的照明,变化的视角和各种遮挡。野外面部表情识别(FER)是一项具有挑战性的任务,现有方法不能很好地表现。但是,对于闭塞面(包含由其他物体引起的遮挡和由头部姿势变化引起的自我封闭),注意机制具有自动关注非封闭区域的能力。在本文中,我们为卷积神经网络(CNN)提出了一个无损注意模型(LLAM),以从面部提取注意力感知的特征。我们的模块通过使用上一层的信息而不是降低维度的信息来避免在生成注意图的过程中衰减信息。顺便说一句,我们通过将注意力图与特征映射融合来自适应地完善特征响应。我们参加了FG-2020情感行为分析的七个基本表达分类子挑战。我们在挑战发布的aff-wild2数据集上验证了我们的方法。在验证集上,我们方法的总准确度(准确性)和未加权平均值(F1)分别为0.49和0.38,最终结果为0.42(0.67 F1得分 + 0.33精度)。

Unlike the constraint frontal face condition, faces in the wild have various unconstrained interference factors, such as complex illumination, changing perspective and various occlusions. Facial expressions recognition (FER) in the wild is a challenging task and existing methods can't perform well. However, for occluded faces (containing occlusion caused by other objects and self-occlusion caused by head posture changes), the attention mechanism has the ability to focus on the non-occluded regions automatically. In this paper, we propose a Lossless Attention Model (LLAM) for convolutional neural networks (CNN) to extract attention-aware features from faces. Our module avoids decay information in the process of generating attention maps by using the information of the previous layer and not reducing the dimensionality. Sequentially, we adaptively refine the feature responses by fusing the attention map with the feature map. We participate in the seven basic expression classification sub-challenges of FG-2020 Affective Behavior Analysis in-the-wild Challenge. And we validate our method on the Aff-Wild2 datasets released by the Challenge. The total accuracy (Accuracy) and the unweighted mean (F1) of our method on the validation set are 0.49 and 0.38 respectively, and the final result is 0.42 (0.67 F1-Score + 0.33 Accuracy).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源