论文标题

通过各向同性的反向Loomis-Whitney不平等现象

Reverse Loomis-Whitney inequalities via isotropicity

论文作者

Alonso-Gutiérrez, David, Brazitikos, Silouanos

论文摘要

给定一个中心的凸面$ k \ subseteq \ mathbb {r}^n $,我们研究常数$ \tildeλ(k)$的最佳价值,使得存在正常的基础$ \ \ {w_i \ \} _ {i = 1}^n $:以下是以下的反向dual loomis-exequ | k |^{n-1} \ leqslant \tildeλ(k)\ prod_ {i = 1}^n | k \ cap w_i^\ perp |。 $$我们证明,对于某些绝对$ c> 1 $,$ \tildeλ(k)\ leqslant(cl_k)^n $,并且根据$ l_k $的估计,$ k $的$ k $的估计值是$ k $的$ k $,在某种意义上是一个绝对的常数$ c> 1 $ and convex $ c $ convex $ c $ $(cl_k)^n \ leqslant \tildeλ(k)\ leqslant(cl_k)^n $。我们还证明了更一般的反向双重织机 - 惠特尼的不平等以及loomis-whitney和双重Loomis-Whitney不平等的反向限制版本。

Given a centered convex body $K\subseteq\mathbb{R}^n$, we study the optimal value of the constant $\tildeΛ(K)$ such that there exists an orthonormal basis $\{w_i\}_{i=1}^n$ for which the following reverse dual Loomis-Whitney inequality holds: $$ |K|^{n-1}\leqslant \tildeΛ(K)\prod_{i=1}^n|K\cap w_i^\perp|. $$ We prove that $\tildeΛ(K)\leqslant(CL_K)^n$ for some absolute $C>1$ and that this estimate in terms of $L_K$, the isotropic constant of $K$, is asymptotically sharp in the sense that there exists another absolute constant $c>1$ and a convex body $K$ such that $(cL_K)^n\leqslant\tildeΛ(K)\leqslant(CL_K)^n$. We also prove more general reverse dual Loomis-Whitney inequalities as well as reverse restricted versions of Loomis-Whitney and dual Loomis-Whitney inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源