论文标题

逆广场Lévy步行不是$ d \ ge 2 $的最佳搜索策略

Inverse square Lévy walks are not optimal search strategies for $d\ge 2$

论文作者

Levernier, Nicolas, Benichou, Olivier, Textor, Johannes, Voituriez, Raphael

论文摘要

Lévy假设指出,逆方形lévy步行是最佳的搜索策略,因为它们以稀疏,随机分布的,可补充的目标最大化相遇率。从分子电机到寻求资源的动物,可以在各种规模上解释大量实验数据的理论依据,得出的结论是,由于其最佳效率,许多生物体进行了Lévy步行以探索空间。在这里,我们通过分析提供对任何空间尺寸$ d $的LévyWalks相遇率的目标密度的依赖性;特别是,对于生物学相关的情况$ d \ ge 2 $,该缩放率显示为lévy指数$α$的{\ it独立},这证明了莱维假设的创建结果不正确。结果,我们表明,优化相对于$α$的相遇速率是{\ it无关紧要的}:它不会随密度而改变缩放,并且实际上可以导致{\ IT} $α$的最佳值,具体取决于系统依赖的建模选择。因此,观察到的反平方列模式的结论是纯粹基于搜索行为动力学的共同选择过程的结果。

The Lévy hypothesis states that inverse square Lévy walks are optimal search strategies because they maximise the encounter rate with sparse, randomly distributed, replenishable targets. It has served as a theoretical basis to interpret a wealth of experimental data at various scales, from molecular motors to animals looking for resources, putting forward the conclusion that many living organisms perform Lévy walks to explore space because of their optimal efficiency. Here we provide analytically the dependence on target density of the encounter rate of Lévy walks for any space dimension $d$ ; in particular, this scaling is shown to be {\it independent} of the Lévy exponent $α$ for the biologically relevant case $d\ge 2$, which proves that the founding result of the Lévy hypothesis is incorrect. As a consequence, we show that optimizing the encounter rate with respect to $α$ is {\it irrelevant} : it does not change the scaling with density and can lead virtually to {\it any} optimal value of $α$ depending on system dependent modeling choices. The conclusion that observed inverse square Lévy patterns are the result of a common selection process based purely on the kinetics of the search behaviour is therefore unfounded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源