论文标题

某些非线性微分方程的先验杂晶溶液的三个结果

Three results on transcendental meromorphic solutions of certain nonlinear differential equations

论文作者

Li, Nan, Yang, Lianzhong

论文摘要

在本文中,我们研究了非线性微分方程的先验性杂形解决方案:$ f^{n}+p(f)= r(z)e^{α(z)} $和$ f^{n}+p _ {*}(f)= p_ {1}(z)e^{α_{1}(z)}+p_ {2}(z) $ n-1 $分别具有小函数和有理功能,$ r $是$ f $的不变小函数,$α$,$α$是一个非稳定的整个功能,$ p_ {1},p_ {2} $是非呈现的,是非呈现的,是非呈现的,$α__{1},<1},α___ pony是poloton。特别是,当$ p_ {1},p_ {2} $是非零常数,而$°α_{1} =°α_{2} = 1 $时,我们会考虑第二个方程的解决方案。我们的结果是LIAO的改进和补充(Complexvar。Elliptic等等,2015,60(6):748--756)和RONG-XU(Mathematics 2019,7,539)等,部分回答了Li提出的问题(J. Math。Anal。Anl。Appl。2011,375:375:375:311,375:310:311,310---319)。

In this paper, we study the transcendental meromorphic solutions for the nonlinear differential equations: $f^{n}+P(f)=R(z)e^{α(z)}$ and $f^{n}+P_{*}(f)=p_{1}(z)e^{α_{1}(z)}+p_{2}(z)e^{α_{2}(z)}$ in the complex plane, where $P(f)$ and $P_{*}(f)$ are differential polynomials in $f$ of degree $n-1$ with coefficients being small functions and rational functions respectively, $R$ is a non-vanishing small function of $f$, $α$ is a nonconstant entire function, $p_{1}, p_{2}$ are non-vanishing rational functions, and $α_{1}, α_{2}$ are nonconstant polynomials. Particularly, we consider the solutions of the second equation when $p_{1}, p_{2}$ are nonzero constants, and $°α_{1}=°α_{2}=1$. Our results are improvements and complements of Liao (Complex Var. Elliptic Equ. 2015, 60(6): 748--756), and Rong-Xu (Mathematics 2019, 7, 539), etc., which partially answer a question proposed by Li (J. Math. Anal. Appl. 2011, 375: 310--319).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源