论文标题

了解沃尔的定理对伯恩赛德群体中谎言关系的依赖性

Understanding Wall's theorem on dependence of Lie relators in Burnside groups

论文作者

Vaughan-Lee, Michael

论文摘要

G.E.沃尔给出了两个不同的证据,证明了由Prime Power指数$ Q $满足的多线谎言关系的显着结果。他表明,如果$ q $是Prime $ p $的力量,并且如果$ f $是$ n $变量中的多线性谎言关系,其中$ n \ neq1 \ operatatorName {mod}(p-1)$,则$ f = 0 $是多次躺椅的结果。多年来,我一直在努力理解他的证据,虽然我对他在《代数杂志》杂志上发表的第一个证明仍然没有丝毫线索,但我终于对他在会议剧集中发表的第二次证明有所了解。在本说明中,我对Wall的第二个定理证明了我的见解。

G.E. Wall gave two different proofs of a remarkable result about the multilinear Lie relators satisfied by groups of prime power exponent $q$. He showed that if $q$ is a power of the prime $p$, and if $f$ is a multilinear Lie relator in $n$ variables where $n\neq1\operatorname{mod}(p-1)$, then $f=0$ is a consequence of multilinear Lie relators in fewer than $n$ variables. For years I have struggled to understand his proofs, and while I still have not the slightest clue about his first proof published in the Journal of Algebra, I finally have some understanding of his second proof published in a conference proceedings. In this note I offer my insights into Wall's second proof of this theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源