论文标题

图形非负矩阵的分数匹配数和光谱半径

Fractional matching number and spectral radius of nonnegative matrix of graphs

论文作者

Liu, Ruifang, Lai, Hong-Jian, Guo, Litao, Xue, Jie

论文摘要

图$ g $的分数匹配是一个函数$ f:e(g)\ to [0,1] $,因此对于v(g)$中的任何$ v \,$ \ sum_ {e _g(v)} f(e)f(e)\ leq 1 $ in $ e_g(v)$ e_g(v)= \ e \ in e e(g)$ $ $ $ $ $ g $的分数匹配数为$μ_{f}(g)= \ max \ {\ sum_ {e \ in E(g)} f(e):f $是$ g \ \} $的分数匹配。对于任何实际数字$ a \ ge 0 $和$ k \ in(0,n)$,可以观察到,如果$ n = | v(g)| $和$δ(g)> \ frac {n-k} {2} {2} $,则$μ_________________________________________________{f}(g)(g)> \ frac> \ frac {n-k} {n-k} $。 We determine a function $φ(a, n,δ, k)$ and show that for a connected graph $G$ with $n = |V(G)|$, $δ(G) \leq\frac{n-k}{2}$, spectral radius $λ_1(G)$ and complement $\overline{G}$, each of the following holds. (i)如果$λ_{1}(ad(g)+a(g))<φ(a,n,δ,k),然后$μ__{f}(g)(g)> \ frac {n-k} {2} {2} {2} {$ $ (ii)如果$λ_{1}(AD(\+edline {g})+a(\ overline {g})))<(a+1)(δ+k-1),$ then $μ__{f}(g)> \ frac> \ frac {n-k} {n-k} {2} {2} {2} {2}。$ $ 作为推论,获得了足够的分数完美匹配的光谱条件以及涉及$ q $ index和$a_α$ spectral半径的类似结果,并且以前的光谱在[欧洲J. Combin。 55(2016)144-148]扩展。

A fractional matching of a graph $G$ is a function $f:E(G) \to [0,1]$ such that for any $v\in V(G)$, $\sum_{e\in E_G(v)}f(e)\leq 1$ where $E_G(v) = \{e \in E(G): e$ is incident with $v$ in $G\}$. The fractional matching number of $G$ is $μ_{f}(G) = \max\{\sum_{e\in E(G)} f(e): f$ is fractional matching of $G\}$. For any real numbers $a \ge 0$ and $k \in (0, n)$, it is observed that if $n = |V(G)|$ and $δ(G) > \frac{n-k}{2}$, then $μ_{f}(G)>\frac{n-k}{2}$. We determine a function $φ(a, n,δ, k)$ and show that for a connected graph $G$ with $n = |V(G)|$, $δ(G) \leq\frac{n-k}{2}$, spectral radius $λ_1(G)$ and complement $\overline{G}$, each of the following holds. (i) If $λ_{1}(aD(G)+A(G))<φ(a, n, δ, k),$ then $μ_{f}(G)>\frac{n-k}{2}.$ (ii) If $λ_{1}(aD(\overline{G})+A(\overline{G}))<(a+1)(δ+k-1),$ then $μ_{f}(G)>\frac{n-k}{2}.$ As corollaries, sufficient spectral condition for fractional perfect matchings and analogous results involving $Q$-index and $A_α$-spectral radius are obtained, and former spectral results in [European J. Combin. 55 (2016) 144-148] are extended.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源