论文标题
钻石量子处理器的优化
Optimisation of diamond quantum processors
论文作者
论文摘要
钻石量子处理器由氮 - 胶囊(NV)中心和周围的核自旋组成,一直是室温量子计算,量子传感和显微镜的显着进步的关键。这些处理器的优化对于开发大型钻石量子计算机以及下一代增强的量子传感器和显微镜至关重要。在这里,我们提出了一个多Qubit Diamond量子处理器的完整模型,并开发了一种用于设计栅极脉冲的半分析方法。此方法在存在随机控制误差的情况下优化了门速度和保真度,并且与反馈优化例程很容易兼容。从理论上讲,对于单量门,我们证明了接近$ \ sim 10^{ - 5} $的不忠行为,并确定证据表明这也可以实现两倍的CZ门。因此,我们的方法将控制误差的效果降低到超细场错位引入的误差以及处理器内部固有的不可避免的反谐解。在开发了这种最佳控制之后,我们通过计算量子傅立叶变换来模拟钻石量子处理器的性能。我们发现模拟的钻石量子处理器能够以低误差概率实现快速操作。
Diamond quantum processors consisting of a nitrogen-vacancy (NV) centre and surrounding nuclear spins have been the key to significant advancements in room-temperature quantum computing, quantum sensing and microscopy. The optimisation of these processors is crucial for the development of large-scale diamond quantum computers and the next generation of enhanced quantum sensors and microscopes. Here, we present a full model of multi-qubit diamond quantum processors and develop a semi-analytical method for designing gate pulses. This method optimises gate speed and fidelity in the presence of random control errors and is readily compatible with feedback optimisation routines. We theoretically demonstrate infidelities approaching $\sim 10^{-5}$ for single-qubit gates and established evidence that this can also be achieved for a two-qubit CZ gate. Consequently, our method reduces the effects of control errors below the errors introduced by hyperfine field misalignment and the unavoidable decoherence that is intrinsic to the processors. Having developed this optimal control, we simulated the performance of a diamond quantum processor by computing quantum Fourier transforms. We find that the simulated diamond quantum processor is able to achieve fast operations with low error probability.