论文标题

能源收集的经验可行性分析 - 车内无线传感器网络

Empirical Feasibility Analysis for Energy Harvesting Intra-Vehicular Wireless Sensor Networks

论文作者

Koca, Mertkan, Gurbilek, Gokhan, Soner, Burak, Coleri, Sinem

论文摘要

车辆电子系统目前利用有线网络进行电动输送(从主电池)和节点之间的通信(例如Lin,Can,Flexray)。有线网络实际上无法容纳运动部件的节点(例如轮胎),并且随着车辆功能复杂性的增加,它们需要长的安全带,大大增加了燃油消耗以及制造和设计成本。作为替代方案,能源收集车内无线传感器网络(IVWSN)可以在所有位置容纳节点,它们消除了接线的需求,大大降低了成本。在本文中,我们通过广泛的车载测量值分析了这种IVWSN框架的可行性,用于2.4 GHz的通信,超宽带(UWB)和毫米波(MMWAVE)频率以及射频(RF),热和振动能量收获。我们的分析表明,MMWave在发动机室中的短线(LOS)链接中表现最好,并且在底盘和乘客隔间的LOS链路附近的性能与最坏情况下的信号与互换和噪声相关性方面。对于在发动机舱和机箱中特别出现的非LOS链接,UWB提供了最高的安全性和可靠性。 2.4 GHz因对所有隔室的干扰而严重遭受痛苦,而UWB则以较低的带宽为代价,利用窄带抑制技术。 MMWave固有地经历了由于其传播特征而导致的干扰非常低。另一方面,RF能量收集在所有隔间中最多可提供1兆瓦的动力。振动和热能收割机可以在发动机室中提供所有消耗<10 mW的节点,并且底盘中所有<5 mW的节点。在乘客室中,由于低温梯度,无法获得热收集,但是振动和RF来源可以提供<1 mW的节点。

Vehicle electronic systems currently utilize wired networks for power delivery (from the main battery) and communication (e.g., LIN, CAN, FlexRay) between nodes. Wired networks cannot practically accommodate nodes in moving parts (e.g., tires) and with the increasing functional complexity in vehicles, they require kilometer-long harnesses, significantly increasing fuel consumption and manufacturing and design costs. As an alternative, energy harvesting intra-vehicular wireless sensor networks (IVWSN) can accommodate nodes in all locations and they obviate the need for wiring, significantly lowering costs. In this paper, we empirically analyze the feasibility of such an IVWSN framework via extensive in-vehicle measurements for communications at 2.4 GHz, ultra wideband (UWB) and millimeter wave (mmWave) frequencies together with radio frequency (RF), thermal and vibration energy harvesting. Our analyses show that mmWave performs best for short line-of-sight (LoS) links in the engine compartment with performance close to UWB for LoS links in the chassis and passenger compartments in terms of worst case signal-to-interference-and-noise-ratio. For non-LoS links, which appear especially more in the engine compartment and chassis, UWB provides the highest security and reliability. 2.4 GHz suffers heavily from interference in all compartments while UWB utilizes narrowband suppression techniques at the cost of lower bandwidth; mmWave inherently experiences very low interference due to its propagation characteristics. On the other hand, RF energy harvesting provides up to 1 mW of power in all compartments. Vibration and thermal energy harvesters can supply all nodes consuming <10 mW in the engine compartment and all <5 mW nodes in the chassis. In the passenger compartment, thermal harvesting is not available due to low temperature gradients but vibration and RF sources can supply <1 mW nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源