论文标题

具有边界接触的两相纳维尔 - 斯托克斯/mullins-sekerka系统的适应性和定性行为

Well-Posedness and Qualitative Behaviour of a Two-phase Navier-Stokes/Mullins-Sekerka system with boundary contact

论文作者

Rauchecker, Maximilian, Wilke, Mathias

论文摘要

我们考虑了一个耦合的两阶段Navier-Stokes/Mullins-Sekerka系统,该系统描述了有界容器内两个不混溶的,不可压缩的流体的运动。分隔液体的移动界面以恒定的九十度角符合容器的边界。这种常见的接口未知,必须确定为问题的一部分。 我们表现​​出良好的态度,并研究解决方案的长期行为,从某些均衡开始。我们证明,对于相等的密度,这些溶液在全球范围内存在,稳定,并以指数速率收敛到平衡溶液。

We consider a coupled two-phase Navier-Stokes/Mullins-Sekerka system describing the motion of two immiscible, incompressible fluids inside a bounded container. The moving interface separating the liquids meets the boundary of the container at a constant ninety degree angle. This common interface is unknown and has to be determined as a part of the problem. We show well-posedness and investigate the long-time behaviour of solutions starting close to certain equilibria. We prove that for equal densities these solutions exist globally in time, are stable, and converge to an equilibrium solution at an exponential rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源