论文标题

微型移动机器人的DC电动机驱动谐振执行器的表征和热管理振荡

Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

论文作者

Colmenares, David, Kania, Randall, Liu, Miao, Sitti, Metin

论文摘要

在本文中,我们为开发用于拍打机翼微型空气车的直流电动机驱动执行器的性能和开发热管理解决方案的性能。执行器是与扭转弹簧并联连接的直流微齿轮运动器,驱动相互的机翼运动。与仅齿轮电机相比,这种设计的扭矩和功率密度分别增加了161.1%和666.8%,同时将所吸引电流降低了25.8%。从非线性空气动力学负载分离的执行器的表征会导致标准指标与其他执行器直接相当。由于热效应而导致的持续时间有限的持续时间。为了预测系统性能,开发了一个总参数热电路模型。该微型运动器的关键模型参数是通过实验鉴定的两个数量级的两个数量级。这包括可变的绕组电阻,衬套摩擦,依赖速度的强制对流以及添加散热器的影响。然后,该模型被用于确定车辆的安全操作包络,并设计重量最佳的散热器。这种执行器设计和热建模方法可以更普遍地用于改善具有电动机驱动振荡肢体或负载的任何微型移动机器人或设备的性能。

In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源