论文标题
具有拓扑口味的类别的内态性质的方程理论
Equational theories of endomorphism monoids of categories with a topological flavor
论文作者
论文摘要
结果表明,所有$ 2 $ bobordism的类别$ 2 \ mathfrak {cob} $的内态性单体没有有限的公理化方程理论。 {拓扑环类别}和后者的各种商(如Aggine templeley-lieb类别)也是如此。对于通过参与富含代数签名的版本,获得了类似的结果。还考虑了这些类别的von-neumann-renformard扩展。
It is shown that the endomorphism monoids of the category $2\mathfrak{Cob}$ of all $2$-cobordisms do not have finitely axiomatizable equational theories. The same holds for the {topological annular category} and various quotients of the latter, like the affine Temperley--Lieb category. Analogous results are obtained for versions with the algebraic signature enriched by involutions. Von-Neumann-regular extensions of these categories are also considered.