论文标题
稳定性和应用
Stability and Applications
论文作者
论文摘要
我们简要概述了布里奇兰(Bridgeland)的稳定条件理论,重点是对代数几何形状的应用。我们在拜耳(Brill of Brill)的证明中绘制了基本思想 - 在太空曲线的属上,格鲁森 - 皮斯金(Gruson-Peskine)和哈里斯(Harris)在作者证明了定理的作者证明中。本说明起源于从代数几何到视觉和AI的第一作者的演讲:庆祝大卫·蒙福德(David Mumford)的数学工作的研讨会,该工作在哈佛大学数学科学与应用中心举行,2018年8月18日至20日。
We give a brief overview of Bridgeland's theory of stability conditions, focusing on applications to algebraic geometry. We sketch the basic ideas in Bayer's proof of the Brill--Noether Theorem and in the authors' proof of a theorem by Gruson--Peskine and Harris on the genus of space curves. This note originated from the lecture of the first author at the conference From Algebraic Geometry to Vision and AI: A Symposium Celebrating the Mathematical Work of David Mumford, held at the Center of Mathematical Sciences and Applications, Harvard University, August 18-20, 2018.